CHAPTER 2: INEQUALITY AND INEQUATIONS
EXERCISE 2(a)
Prove that:
1. (i)
Solution:
We know that,
(ii) If a > 0, b > 0, a > b then
Solution:
Given,
a > 0, b > 0
Now,
a > b
2. (i)
Solution:
We know that,
…………. (1)
…………. (2)
(1)×(2)⇒
(ii)
Solution:
We know that,
……………… (1)
and
……………… (2)
(1) × (2)⇒
3. a2 + b2 ≥2ab
Solution:
We know that,
(a – b)2 ≥ 0
⇒ a2 – 2ab + b2 ≥ 0
⇒ a2 + b2 ≥ 2ab
4. If a > 0, b> 0, x > 0 and a < b, then
Solution:
Given,
a < b
⇒ ax < bx [Multiplying both sides by x]
⇒ ab + ax < ab + bx [Adding ab to both sides]
⇒ a(b + x) < b(a + x)
5.
Solution:
We know that,
a2 + b2 ≥ 2ab
⇒ a2 + b2 + a2 + b2 ≥ a2 + b2 + 2ab [Adding a2 + b2 on both sides]
⇒ 2(a2 + b2) ≥ (a + b)2
………………. (1)
Similarly,
………………. (1)
and
………………. (1)
(1) + (2) + (3) ⇒
6. (i) If a > 1, b > 1 then (a + 1)(b + 1) < 2(ab + 1)
Solution:
⸪ a > 1
⇒ a – 1 > 0
⸪ b > 1
⇒ b – 1 > 0
⸫(a – 1)(b – 1) > 0
⇒ a(b – 1) – (b – 1) > 0
⇒ ab – a – b + 1 > 0
⇒ ab + 1 > a + b
⇒ ab + 1 + ab + 1 > ab + 1 + a + b [Adding ab + 1 to both sides]
⇒ 2ab + 2 > ab + a + b + 1
⇒ 2(ab + 1) > a(b + 1) + (b + 1)
⇒ 2(ab + 1) > (b + 1)(a + 1)
⇒ 2(ab + 1) > (a + 1)(b + 1)
⇒ (a + 1)(b + 1) < 2(ab + 1)
(ii) If a, b, c ∈ R. Prove that (a + b)(b + c)(c + a) ≥ 8abc
Solution:
We know that,
…………….. (1)
Similarly,
…………….. (2)
and
…………….. (3)
Multiplying (1), (2) and (3), we get,
7. (i) a3 + b3 ≥ a2b + ab2
Solution:
We know that,
……………. (1)
and
……………. (2)
Dividing (1) by (2) we get,
⇒ a3 + b3 ≥ ab(a + b)
⇒ a3 + b3 ≥ a2b + ab2
(ii) a4 + b4 ≥ a3b + ab3.
Solution:
We know that,
……………. (1)
and
……………. (2)
Dividing (1) by (2) we get,
⇒ a4 + b4 ≥ ab(a2 + b2)
⇒ a4 + b4 ≥ a3b + ab3
8. If a > b > 0 and c > 0, then prove that:
(i)
Solution:
Given,
a > b
⇒ ac > bc [Multiplying both sides by c]
⇒ ab + ac > ab + bc [Adding ab to both sides]
⇒ a(b + c) > b(a + c)
(ii) a3 + b3 > a2b + ab2
Solution:
We know that,
……………. (1)
and
……………. (2)
Dividing (1) by (2) we get,
⇒ a3 + b3 ≥ ab(a + b)
⇒ a3 + b3 ≥ a2b + ab2
(iii) a3 – b3 ≥ a2b – ab2
Solution:
Given,
a > b
⇒ a – b > 0
Now,
a2 + b2 ≥ 0
⇒ a2 + b2 + ab ≥ ab [Adding ab to both sides]
⇒ (a – b)(a2 + b2 + ab) ≥ ab(a – b) [Multiplying both sides by a – b]
⇒ a3 – b3 ≥ a2b – ab2
(iv)
Solution:
Given
a > b
⇒ a2 > b2
⇒ 2a2 > 2b2 [Multiplying both sides by 2]
⇒ ab + 2a2 > ab + 2b2 [Adding ab to both sides]
⇒ a(b + 2a) > b(a + 2b)
9. If a, b, c, d are positive and then prove that
Solution:
Given,
[Adding to both sides]
[Multiplying both sides by d]
……………. (1)
Also,
[Adding to both sides]
[Multiplying both sides by b]
……………. (2)
From (1) and (2) we get,
10. If a, b, c are positive then show that
(i)
Solution:
⸪a, b, c > 0,
⸫ ab, bc, ca > 0
We know that,
……………….. (1)
Similarly,
……………….. (2)
and
……………….. (3)
Adding (1), (2) and (3) we get,
(ii)
Solution:
⸪a, b, c > 0
We know that,
(iii)
Solution:
Given,
a, b, c > 0
⸫ b2 + c2 ≥ 0
⇒ b2 + 2bc + c2 ≥ 2bc [Adding 2bc to both sides]
⇒ (b + c)2 ≥ 2bc
………… (1)
Similarly,
………… (2)
and
………… (3)
Adding (1), (2) and (3) we get,
11. If a > 0, a ≠1, then show that
(i)
Solution:
We know that
(a – 1)2 > 0
⇒ (a – 1)2(a2 + a + 1) > 0 [Multiplying both sides by a2 + a + 1]
⇒ (a – 1)(a – 1)(a2 + a + 1) > 0
⇒ (a – 1)(a3 – 1) > 0
⇒ a(a3 – 1) – 1(a3 – 1) > 0
⇒ a4 – a – a3 + 1 > 0
⇒ a4 + 1 > a3 + a
⇒ a4 + 1 > a(a2 + 1)
[Dividing both sides by a]
(ii)
Solution:
Given,
a > 0
⸫a4, a3, a2, a > 0
No comments:
Post a Comment