js

Thursday, January 28, 2021

SEBA Class VIII Advanced Mathematics CHAPTER 2: INEQUALITY AND INEQUATIONS

 CHAPTER 2: INEQUALITY AND INEQUATIONS


EXERCISE 2(a)


Prove that:

1. (i)

Solution:

We know that,

(ii) If a > 0, b > 0, a > b then

Solution:

Given,

a > 0, b > 0

Now, 

a > b

2. (i)

Solution:

We know that,

…………. (1)

…………. (2)

(1)×(2)

(ii)

Solution:

We know that,

……………… (1)

and

……………… (2)

(1) × (2)

3. a2 + b2 ≥2ab

Solution:

We know that,

(ab)2 ≥ 0

a2 – 2ab + b2 ≥ 0

a2 + b2 ≥ 2ab

4. If a > 0, b> 0, x > 0 and a < b, then

Solution:

Given,

a < b

ax < bx [Multiplying both sides by x]

ab + ax < ab + bx [Adding ab to both sides]

a(b + x) < b(a + x)


5.

Solution:

We know that,

a2 + b2 ≥ 2ab

a2 + b2 + a2 + b2a2 + b2 + 2ab [Adding a2 + b2 on both sides]

2(a2 + b2) ≥ (a + b)2

………………. (1)

Similarly,

………………. (1)

and

………………. (1)

(1) + (2) + (3)

6. (i) If a > 1, b > 1 then (a + 1)(b + 1) < 2(ab + 1)

Solution:

a > 1

a – 1 > 0

b > 1

b – 1 > 0

⸫(a – 1)(b – 1) > 0

a(b – 1) – (b – 1) > 0

abab + 1 > 0

ab + 1 > a + b

ab + 1 + ab + 1 > ab + 1 + a + b [Adding ab + 1 to both sides]

2ab + 2 > ab + a + b + 1

2(ab + 1) > a(b + 1) + (b + 1)

2(ab + 1) > (b + 1)(a + 1)

2(ab + 1) > (a + 1)(b + 1)

(a + 1)(b + 1) < 2(ab + 1)

(ii) If a, b, c R. Prove that (a + b)(b + c)(c + a) ≥ 8abc

Solution:

We know that,

…………….. (1)

Similarly,

…………….. (2)

and

…………….. (3)

Multiplying (1), (2) and (3), we get,


7. (i) a3 + b3a2b + ab2

Solution:

We know that,

……………. (1)

and

……………. (2)

Dividing (1) by (2) we get,

a3 + b3ab(a + b)

a3 + b3a2b + ab2


(ii) a4 + b4a3b + ab3.  

Solution:

We know that,

……………. (1)

and

 

……………. (2)

Dividing (1) by (2) we get,

a4 + b4ab(a2 + b2)

a4 + b4a3b + ab3

8. If a > b > 0 and c > 0, then prove that:

(i)

Solution:

Given,

a > b

ac > bc [Multiplying both sides by c]

ab + ac > ab + bc [Adding ab to both sides]

a(b + c) > b(a + c)

(ii) a3 + b3 > a2b + ab2

Solution:

We know that,

……………. (1)

and

……………. (2)

Dividing (1) by (2) we get,

a3 + b3ab(a + b)

a3 + b3a2b + ab2


(iii) a3b3a2bab2

Solution:

Given,

a > b

ab > 0

Now,

a2 + b2 ≥ 0

a2 + b2 + ab ab [Adding ab to both sides]

(ab)(a2 + b2 + ab) ab(ab) [Multiplying both sides by ab]

a3b3a2bab2


(iv)

Solution:

Given

a > b

a2 > b2

2a2 > 2b2 [Multiplying both sides by 2]

ab + 2a2 > ab + 2b2 [Adding ab to both sides]

a(b + 2a) > b(a + 2b)

9. If a, b, c, d are positive and then prove that

Solution:

Given,

[Adding to both sides]

[Multiplying both sides by d]

……………. (1)

Also,

[Adding to both sides]

[Multiplying both sides by b]

……………. (2)

From (1) and (2) we get,

10. If a, b, c are positive then show that

(i)

Solution:

a, b, c > 0,

ab, bc, ca > 0

We know that,

……………….. (1)

Similarly,

……………….. (2)

and

……………….. (3)

Adding (1), (2) and (3) we get,

(ii)

Solution:

a, b, c > 0

We know that,

(iii)

Solution:

Given,

a, b, c > 0

b2 + c2 ≥ 0

b2 + 2bc + c2 ≥  2bc [Adding 2bc to both sides]

(b + c)2 ≥  2bc

………… (1)

Similarly,

………… (2)

and

………… (3)

Adding (1), (2) and (3) we get,


11. If a > 0, a ≠1, then show that

(i)

Solution:

We know that

(a – 1)2 > 0

(a – 1)2(a2 + a + 1) > 0 [Multiplying both sides by a2 + a + 1]

(a – 1)(a – 1)(a2 + a + 1) > 0

(a – 1)(a3 – 1) > 0

a(a3 – 1) – 1(a3 – 1) > 0

a4aa3 + 1 > 0

a4 + 1 > a3 + a

a4 + 1 > a(a2 + 1)

[Dividing both sides by a]

(ii)

Solution:

Given,

a > 0

a4, a3, a2, a > 0


No comments:

Post a Comment

Class 10 Assamese lesson 10 অৰুণিমা সিনহা Question answer

 (১) চমুকৈ উত্তৰঃ লিখা। (ক) অৰুণিমা সিনহাৰ কোনবিধ খেলত বিশেষ দক্ষতা আছিল ?  উত্তৰঃ অৰুণিমা সিনহাৰ ভলীবল খেলত বিশেষ দক্ষতা আছিল। (খ) অৰুনি...