js

Thursday, February 4, 2021

SEBA Class VIII Advanced Mathematics Questions Chapter 2

CHAPTER 2: INEQUALITY AND INEQUATIONS

EXERCISE 2(a)

Prove that:

1. (i)

(ii) If a > 0, b > 0, a > b then

2. (i)

(ii)

3. a2 + b2 ≥2ab

4. If a > 0, b> 0, x > 0 and a < b, then

5.

6. (i) If a > 1, b > 1 then (a + 1)(b + 1) < 2(ab + 1)

 (ii) If a, b, c R. Prove that (a + b)(b + c)(c + a) ≥ 8abc

7. (i) a3 + b3a2b + ab2

(ii) a4 + b4a3b + ab3.  

8. If a > b > 0 and c > 0, then prove that:

(i)

(ii) a3 + b3 > a2b + ab2

(iii) a3b3a2bab2

(iv)

9. If a, b, c, d are positive and then prove that

10. If a, b, c are positive then show that

(i)

(ii)

 (iii)

11. If a > 0, a ≠1, then show that

(i)

 (ii)