SEBA Class X Mathematics – Formula Sheet
$a = bq + r,\; 0 \le r < b$
$\text{HCF} \times \text{LCM} = a \times b$
$\text{Dividend} = \text{Divisor} \times \text{Quotient} + \text{Remainder}$
$\text{Sum of zeroes} = -\frac{b}{a}$
$\text{Product of zeroes} = \frac{c}{a}$
$a_1x + b_1y + c_1 = 0$
$a_2x + b_2y + c_2 = 0$
$\frac{a_1}{a_2} \ne \frac{b_1}{b_2}$ → Unique solution
$\frac{a_1}{a_2} = \frac{b_1}{b_2} \ne \frac{c_1}{c_2}$ → No solution
$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ → Infinite solutions
$ax^2 + bx + c = 0$
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$D = b^2 - 4ac$
$a_n = a + (n - 1)d$
$S_n = \frac{n}{2}[2a + (n - 1)d]$
$S_n = \frac{n}{2}(a + l)$
$\text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
$\text{Section Formula} = \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$
$\text{Area} = \frac{1}{2}|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|$
$\sin\theta = \frac{\text{Perpendicular}}{\text{Hypotenuse}}$
$\cos\theta = \frac{\text{Base}}{\text{Hypotenuse}}$
$\tan\theta = \frac{\text{Perpendicular}}{\text{Base}}$
$\sin^2\theta + \cos^2\theta = 1$
$1 + \tan^2\theta = \sec^2\theta$
$1 + \cot^2\theta = \cosec^2\theta$
$\text{Circumference} = 2\pi r$
$\text{Area} = \pi r^2$
$\text{Sector Area} = \frac{\theta}{360}\pi r^2$
$\text{Arc Length} = \frac{\theta}{360}2\pi r$
$\text{Cuboid} = lbh$
$\text{Cylinder} = \pi r^2h$
$\text{Cone} = \frac{1}{3}\pi r^2h$
$\text{Sphere} = \frac{4}{3}\pi r^3$
$\text{Mean} = \frac{\sum fx}{\sum f}$
$\text{Mean} = a + \frac{\sum fd}{\sum f}$
$\text{Mean} = a + \frac{\sum fu}{\sum f} \times h$
$P(E) = \frac{\text{Favourable Outcomes}}{\text{Total Outcomes}}$
$0 \le P(E) \le 1$